Mittlerer Filter oder durchschnittlicher Filter Kategorie. Digitale Signal - und Bildverarbeitung (DSP und DIP) Softwareentwicklung. Abstrakt. Der Artikel ist ein praktischer Leitfaden für durchschnittliche Filter oder durchschnittliche Filter Verständnis und Umsetzung. Artikel enthält Theorie, C-Quellcode, Programmieranleitung und Beispielanwendung. 1. Einführung in das Mittelfilter oder Mittelfilter Mittelwertfilter. Oder Durchschnittsfilter ist ein Fensterfilter der linearen Klasse, der das Signal glättet (Bild). Der Filter arbeitet als Tiefpaß. Die Grundidee hinter dem Filter ist für jedes Element des Signals (Bild) nehmen einen Durchschnitt über seine Nachbarschaft. Um zu verstehen, wie das in der Praxis gemacht wird, beginnen wir mit der Fensteridee. 2. Filter Fenster oder Maske Lassen Sie uns vorstellen, sollten Sie einen Brief lesen und was Sie sehen im Text durch Loch in spezielle Schablone wie diese eingeschränkt. Also, das Ergebnis des Lesens ist Sound t. Ok, lassen Sie uns den Brief wieder lesen, aber mit Hilfe einer anderen Schablone: Jetzt ist das Ergebnis des Lesens t ist Sound 240. Lassen Sie uns den dritten Versuch machen: Jetzt lesen Sie Buchstaben t als Ton 952. Was passiert hier Zu sagen, dass In der mathematischen Sprache, machen Sie eine Operation (Lesen) über Element (Buchstabe t). Und das Ergebnis (Ton) hängt von der Elementnachbarschaft (Buchstaben neben t) ab. Und diese Schablone, die hilft, Elementnachbarschaft aufzuheben, ist Fenster Ja ist Fenster nur eine Schablone oder ein Muster, durch das Sie das Elementnachbarschaft 0151 einen Satz von Elementen um das gegebene 0151 vorwählen, um Ihnen zu helfen, Entscheidung zu treffen. Ein anderer Name für Filter-Fenster ist Maske 0151 Maske ist eine Schablone, die Elemente, die wir nicht darauf achten, versteckt. In unserem Beispiel ist das Element, das wir am linken Rand des Fensters betätigen, in der Praxis jedoch seine übliche Position die Mitte des Fensters. Lassen Sie uns einige Fenster Beispiele sehen. In einer Dimension. Feige. 4. Fenster oder Maske der Größe 5 in 1D. In zwei Dimensionen. Feige. 5. Fenster oder Maske der Größe 3times3 in 2D. In drei Dimensionen. Denken Sie über Gebäude. Und jetzt mdash über Raum in diesem Gebäude. Der Raum ist wie 3D-Fenster, das ausschneidet einige Unterraum aus dem gesamten Raum des Gebäudes. Sie finden 3D-Fenster in Volumen (Voxel) Bildverarbeitung. 3. Verständnis der mittleren Filter Nun wollen wir sehen, wie man einen Durchschnitt über Elemente neighborhoodrdquo. Die Formel ist einfach 0151 Summe Elemente und dividieren die Summe durch die Anzahl der Elemente. Wir wollen z. B. einen Durchschnitt für den Fall berechnen, der in Abb. Fig. 7 Feige. 7. Durchschnittlich. Und das ist alles. Ja, wir haben nur 1D-Signal durch Mittelfilter gefiltert Lassen Sie uns fortsetzen und schreiben Sie Schritt für Schritt Anleitungen für die Verarbeitung durch Mittelfilter. Mittleren Filter oder durchschnittlichen Filter-Algorithmus: Platzieren Sie ein Fenster über Element Nehmen Sie eine durchschnittliche 0151 Summe Elemente und dividieren Sie die Summe durch die Anzahl der Elemente. Nun, wenn wir den Algorithmus haben, ist es an der Zeit, einige Code mdash schreiben lassen uns auf die Programmierung kommen. 4. 1D-Mittelfilter-Programmierung In diesem Abschnitt entwickeln wir 1D-Mittelfilter mit Fenster der Größe 5. Wir haben 1D-Signal der Länge N als Eingang. Der erste Schritt ist die Platzierung der Fenster 0151 wir tun, dass durch Änderung der Index der führenden Element: Achten Sie darauf, dass wir mit dem dritten Element beginnen und Finishing mit den letzten zwei. Das Problem ist, dass wir nicht mit dem ersten Element beginnen können, da in diesem Fall der linke Teil des Filterfensters leer ist. Wir werden unten diskutieren, wie dieses Problem zu lösen. Der zweite Schritt ist die durchschnittliche, ok: Nun, schreiben Sie uns den Algorithmus als Funktion: Typ-Element könnte definiert werden als: 5. Behandlung von Kanten Für alle Fenster-Filter gibt es ein Problem. Das ist Kante behandeln. Wenn Sie Fenster über das erste (letzte) Element platzieren, ist der linke (rechte) Teil des Fensters leer. Um die Lücke zu schließen, sollte das Signal verlängert werden. Für Mittelfilter ist es sinnvoll, Signal - oder Bildsymmetrie so zu verlängern: So, bevor das Signal an unsere mittlere Filterfunktion weitergegeben wird, sollte das Signal verlängert werden. Lassen Sie uns aufschreiben die Hülle, die alle Vorbereitungen macht. Wie Sie sehen können, berücksichtigt unser Code einige praktische Fragen. Zuerst prüfen wir unsere Eingangsparameter 0151 Signal sollte nicht NULL sein und Signallänge sollte positiv sein: Zweiter Schritt 0151 prüfen wir Fall N1. Dieser Fall ist ein spezieller Fall, denn um eine Erweiterung zu bauen, brauchen wir mindestens zwei Elemente. Für das Signal von 1 Elementlänge ergibt sich das Signal selbst. Wie auch darauf achten, unsere mittlere Filter arbeitet an Ort und Stelle, wenn Ausgangsparameter Ergebnis NULL ist. Lassen Sie uns jetzt Speicher für Signalverlängerung zuteilen. Und überprüfen Sie die Speicherzuweisung. Ist es möglich, einen gleitenden Durchschnitt in C ohne die Notwendigkeit für ein Fenster von Proben Ive gefunden, dass ich ein bisschen optimieren kann, indem Sie eine Fenstergröße, die eine Macht von zwei, um für Bit-Verschiebung statt zu ermöglichen Aber nicht brauchen einen Puffer wäre schön. Gibt es eine Möglichkeit, ein neues gleitendes Durchschnittsergebnis nur als Funktion des alten Ergebnisses und des neuen Beispiels auszudrücken, definieren Sie einen beispielhaften gleitenden Durchschnitt in einem Fenster von 4 Proben: Add new sample e: Ein gleitender Durchschnitt kann rekursiv implementiert werden , Aber für eine exakte Berechnung des gleitenden Durchschnitts müssen Sie sich an die älteste Eingangsabfrage in der Summe (dh die a in Ihrem Beispiel) erinnern. Für einen N-gleitenden Durchschnitt berechnen Sie: wobei yn das Ausgangssignal und xn das Eingangssignal ist. Gl. (1) können rekursiv geschrieben werden, also müssen Sie sich stets an die Stichprobe xn-N erinnern, um (2) zu berechnen. Wie von Conrad Turner angemerkt, können Sie stattdessen ein (unendlich langes) exponentielles Fenster verwenden, mit dem Sie die Ausgabe nur aus dem vergangenen Ausgang und dem aktuellen Eingang berechnen können. Dies ist jedoch kein normaler (ungewichteter) gleitender Durchschnitt, sondern ein exponentieller Wert Gewogenen gleitenden Durchschnitt, wo die Proben in der Vergangenheit ein geringeres Gewicht erhalten, aber (zumindest in der Theorie) man nie etwas vergessen (die Gewichte nur kleiner und kleiner für Proben weit in der Vergangenheit). Ich habe einen gleitenden Durchschnitt ohne einzelnen Element-Speicher für ein GPS-Tracking-Programm, das ich geschrieben habe. Ich beginne mit 1 Probe und dividiere durch 1, um die aktuelle Durchschn. Ich füge dann anothe Probe und dividiere durch 2 zu den aktuellen Durchschn. Das geht so lange weiter, bis ich auf die Länge des Durchschnitts komme. Jedes Mal danach, füge ich in der neuen Probe, erhalten Sie den Durchschnitt und entfernen Sie diesen Durchschnitt aus der Gesamtmenge. Ich bin kein Mathematiker, aber das schien ein guter Weg, es zu tun. Ich dachte, es würde den Magen eines echten Mathematik-Kerl, aber es stellt sich heraus, es ist eine der akzeptierten Möglichkeiten, es zu tun. Und es funktioniert gut. Denken Sie daran, dass je höher Ihre Länge, desto langsamer folgt es, was Sie folgen wollen. Das kann nicht die meiste Zeit, aber wenn folgende Satelliten, wenn Sie langsam sind, könnte die Spur weit von der tatsächlichen Position und es wird schlecht aussehen. Sie könnten eine Lücke zwischen dem Sat und den nachfolgenden Punkten haben. Ich wählte eine Länge von 15 aktualisiert 6 mal pro Minute, um eine ausreichende Glättung und nicht zu weit von der tatsächlichen Sat-Position mit den geglätteten Spur Punkte erhalten. Antwort # 2 am: November 16, 2010, um 23:03 Uhr Initialisierung insgesamt 0, count0 (jedes Mal, wenn ein neuer Wert dann ein Eingang (scanf), ein add totalnewValue, ein Inkrement (count), ein dividieren Durchschnitt (totalcount) Dies wäre ein gleitender Durchschnitt über Alle Eingänge Um den Durchschnitt über nur die letzten 4 Eingänge zu berechnen, benötigen Sie 4 Inputvariablen, vielleicht kopieren Sie jeden Eingang zu einem älteren inputvariable und berechnen dann den neuen gleitenden Durchschnitt als Summe der 4 Inputvariablen, geteilt durch 4 (Rechtsverschiebung 2 wäre Gut, wenn alle Eingänge waren positiv, um die durchschnittliche Berechnung beantwortet werden 3. Februar um 4:06 Das wird tatsächlich berechnen den Gesamtdurchschnitt und nicht den gleitenden Durchschnitt. Wenn Zähler größer wird der Einfluss eines neuen Eingangsprobe wird verschwindend kleiner ndash Hilmar Feb Ich habe eine Menge von Werten im Laufe der Zeit von einem Hardware-Kompass. Dieser Kompass ist sehr genau und Updates sehr oft, mit dem Ergebnis, dass, wenn es leicht wackelt , Ich am Ende mit dem ungeraden Wert, der wild unvereinbar mit seinen Nachbarn ist. Ich möchte diese Werte glätten. Nachdem ich einiges gelesen hatte, scheint es, dass was ich will, ein Hochpaßfilter, ein Tiefpaßfilter oder ein gleitender Durchschnitt ist. Gleitender Durchschnitt kann ich mit erhalten, halten Sie einfach eine Geschichte der letzten 5 Werte oder was auch immer, und verwenden Sie den Durchschnitt dieser Werte stromabwärts in meinem Code, wo ich war einmal nur mit dem jüngsten Wert. Das sollte, glaube ich, die Wackeln schön abschneiden, aber es schlägt mir, dass seine wahrscheinlich ziemlich ineffizient, und dies ist wahrscheinlich eines dieser bekannten Probleme zu Proper Programmers, denen theres eine wirklich ordentliche Clever Math-Lösung. Ich bin jedoch einer jener schrecklichen selbstprogrammierten Programmierer ohne einen Fetzen der formalen Bildung in irgendetwas sogar vage mit CompSci oder Mathe verwandt. Lesen um ein Bit deutet darauf hin, dass dies ein Hoch-oder Tiefpassfilter sein kann, aber ich kann nicht finden, was in Begriffen verständlich für einen Hack wie ich, was die Wirkung dieser Algorithmen wäre auf einer Reihe von Werten, geschweige denn wie die Mathematik Arbeitet. Die Antwort hier. Zum Beispiel, technisch beantwortet meine Frage, aber nur verständlich für diejenigen, die wahrscheinlich schon wissen, wie das Problem zu lösen. Es wäre ein sehr schöner und kluger Mensch, der die Art des Problems erklären könnte, und das, wie die Lösungen funktionieren, in Begriffen, die einem Kunstabsolventen verständlich sind. Wenn Ihr gleitender Durchschnitt muss lang sein, um die gewünschte Glättung zu erreichen, und Sie brauchen nicht wirklich eine bestimmte Form des Kernels, dann sind Sie besser dran, wenn Sie einen exponentiell verfallenden gleitenden Durchschnitt verwenden: wo Sie Wählen Sie winzig, um eine entsprechende Konstante zu sein (zB wenn Sie winzige 1- 1N wählen, wird es die gleiche Menge an Mittelung wie ein Fenster der Größe N, aber verteilt unterschiedlich über ältere Punkte). Wie auch immer, da der nächste Wert des gleitenden Durchschnitts hängt nur von der vorherigen und Ihre Daten, müssen Sie nicht eine Warteschlange oder etwas zu halten. Und Sie können denken, dies zu tun, so etwas wie: Nun, ich habe einen neuen Punkt, aber ich dont wirklich vertrauen es, so Im werde 80 meiner alten Schätzung der Messung zu halten, und nur vertrauen diesem neuen Datenpunkt 20. Das ist So ziemlich das gleiche wie zu sagen, Nun, ich vertraue nur diesem neuen Punkt 20, und ich benutze 4 andere Punkte, die ich vertrauen die gleiche Menge, außer dass anstatt explizit nehmen die 4 anderen Punkten, youre unter der Annahme, dass die Mittelung haben Sie das letzte Mal War vernünftig, so können Sie Ihre vorherige Arbeit. Beantwortet Sep 21 10 at 14:27 Hey, ich weiß, das ist 5 Jahre zu spät, aber danke für eine großartige Antwort. Ich arbeite an einem Spiel, bei dem der Klang sich nach deiner Geschwindigkeit ändert, aber wegen des laufenden Spiels auf einem Langsamcomputer würde die Geschwindigkeit stark schwanken, was für die Lenkung gut war, aber super ärgerlich in Bezug auf den Klang. Dies war eine wirklich einfache und billige Lösung für etwas, das ich für ein wirklich komplexes Problem halten würde. Ndash Wenn Sie versuchen, den gelegentlichen ungeraden Wert zu entfernen, ist ein Tiefpassfilter die beste der drei Optionen, die Sie identifiziert haben. Tiefpaßfilter erlauben langsame Änderungen, wie die, die durch das Drehen eines Kompasses von Hand verursacht werden, während Abweisen von Hochgeschwindigkeitsänderungen, wie z. B. durch Stöße auf der Straße, verursacht werden. Ein gleitender Durchschnitt wird wahrscheinlich nicht ausreichen, da die Auswirkungen eines einzelnen Blips in Ihren Daten auf mehrere nachfolgende Werte wirken, abhängig von der Größe des gleitenden Durchschnittsfensters. Wenn die ungeraden Werte leicht erkannt werden, können Sie sogar mit einem Glitch-Entfer - nal-Algorithmus besser abschneiden, der sie komplett ignoriert: Hier ist ein Guick-Graphen zu veranschaulichen: Der erste Graphen ist das Eingangssignal mit einem unangenehmen Glitch. Die zweite Grafik zeigt die Wirkung eines 10-stelligen Gleitmittels. Der endgültige Graph ist eine Kombination aus dem 10-Sample-Mittelwert und dem einfachen Glitch-Detektionsalgorithmus, der oben gezeigt ist. Wenn der Glitch detektiert wird, wird anstelle des tatsächlichen Wertes der 10-Sample-Mittelwert verwendet. Beantwortet Sep 21 10 am 13:38 Schön erklärt und Bonuspunkte für die Grafik) ndash Henry Cooke Sep 22 10 at 0:50 Wow. Seldomly sah so eine schöne Antwort ndash Muis Jun 4 13 at 9:14 Der gleitende Durchschnitt ist ein Tiefpassfilter. Ndash nomen Okt 21 13 am 19:36 Versuchen Sie einen runningstreaming Median statt. Ndash kert Apr 25 14 am 22:09 Gleitender Durchschnitt kann ich unten erhalten. Aber es scheint mir, dass seine wahrscheinlich ziemlich ineffizient. Theres wirklich kein Grund ein gleitender Durchschnitt sollte ineffizient sein. Sie halten die Anzahl der Datenpunkte, die Sie in einem Puffer (wie eine zirkuläre Warteschlange) wollen. An jedem neuen Datenpunkt pflücken Sie den ältesten Wert und subtrahieren ihn von einer Summe, und drücken Sie den neuesten und fügen Sie ihn der Summe hinzu. Jeder neue Datenpunkt bringt also nur einen Popp, eine Addition und eine Subtraktion mit sich. Ihr gleitender Durchschnitt ist immer diese Verschiebungssumme dividiert durch die Anzahl der Werte in Ihrem Puffer. Es wird ein wenig trickiger, wenn youre Empfangen von Daten gleichzeitig von mehreren Threads, aber da Ihre Daten von einem Hardware-Gerät kommt, das scheint sehr zweifelhaft für mich. Oh und auch: schreckliche Selbst-gelehrte Programmierer vereinen) Der gleitende Durchschnitt schien mir ineffizient, weil Sie einen Puffer von Werten speichern müssen - besser, nur einige Clever Maths mit Ihrem Eingabewert und aktuellen Arbeitswert Ich glaube, dass 39 ist, wie exponentiell gleitenden Durchschnitt Arbeitet. Eine Optimierung, die ich für diese Art von gleitendem Durchschnitt gesehen habe, beinhaltet die Verwendung eines Fixlängen-Warteschlangen-Amps, einen Zeiger auf, wo Sie sich in dieser Warteschlange befinden, und einfach den Zeiger um (mit oder einem If) wickeln. Voila Kein teurer Pushpop. Power für die Amateure, Bruder ndash Henry Cooke Henry: Für einen geraden-gleitenden Durchschnitt brauchst du den Puffer einfach so, dass du weißt, welcher Wert geknallt wird, wenn der nächste Wert gedrückt wird. Das heißt, die quotfixed-Länge Warteschlange amp eine pointerquot Sie beschreiben ist genau das, was ich durch quotcircular queue. quot Bedeutet, warum ich sage, es ist nicht ineffizient. Was meinst du, ich meinte, Und wenn Ihre Antwort ist quotan Array, das seine Werte zurück verschiebt sich auf jedem indexierten removalquot (wie std :: vector in C). Also, I39m so weh I don39t sogar wollen, um mit Ihnen zu sprechen) ndash Dan Tao 22 September at 1:58 Henry: Ich don39t wissen über AS3, aber ein Java-Programmierer bekam Sammlungen wie CircularQueue zu seiner Verfügung (I39m nicht a Java-Entwickler, so I39m sicher, es gibt bessere Beispiele da draußen that39s genau das, was ich aus einer schnellen Google-Suche gefunden), die genau die Funktionalität implementiert, die wir reden. I39m ziemlich zuversichtlich, die Mehrheit der mittleren und niedrigen Sprachen mit Standard-Bibliotheken haben etwas ähnliches (z. B. in. NET there39s QueueltTgt). Jedenfalls war ich selbst Philosophie. alles ist vergeben. Ndash Dan Tao Ein exponentiell abnehmender gleitender Durchschnitt kann von Hand mit nur dem Trend berechnet werden, wenn Sie die richtigen Werte verwenden. Sehen Sie fourmilab. chhackdiete4 für eine Idee, wie dies schnell mit einem Stift und Papier, wenn Sie für exponentiell geglättet gleitenden Durchschnitt mit 10 Glättung suchen. Aber da Sie einen Computer haben, möchten Sie wahrscheinlich binäre Verschiebung im Gegensatz zur Dezimalverschiebung tun) Auf diese Weise brauchen Sie nur eine Variable für Ihren aktuellen Wert und einen für den Durchschnitt. Daraus kann dann der nächste Mittelwert berechnet werden. Beantwortet eine Technik namens Bereichstor, die gut funktioniert mit Low-Vorkommen falschen Proben. Unter der Annahme einer der oben erwähnten Filtertechniken (gleitender Durchschnitt, exponentiell), sobald Sie über ausreichende Historie verfügen (eine Zeitkonstante), können Sie die neue, eingehende Datenprobe für die Angemessenheit testen, bevor sie zur Berechnung hinzugefügt wird. Ist ein gewisses Wissen über die maximale vernünftige Änderungsrate des Signals erforderlich. Wird die Rohprobe mit dem letzten geglätteten Wert verglichen, und wenn der absolute Wert dieser Differenz größer als der zulässige Bereich ist, wird diese Probe herausgeworfen (oder durch eine Heuristik ersetzt, zB eine Vorhersage basierend auf der Steigungsdifferenz oder dem Trend Vorhersagewert aus doppelten exponentiellen Glättung) beantwortet April 30 16 at 6:56
No comments:
Post a Comment